Изучил много литературы на эту тему, попытался разобраться досконально с этой производной, знаю определения формулы, понимаю геометрический и физический смысл производной.
Не обманывай себя: если бы ты понимал геометрический смысл производной, у тебя не возникло бы дальнейших вопросов.
Не могли бы вы объяснить это простыми словами
Давай с элементарного геометрического смысла и начнём: пусть у тебя есть график дифференцируемой функции y=f(x), это такая непрерывная линия. А ты -- очень маленький и стоишь на этой линии. y показывает на север, x -- на восток, а линия, например, уходит на северо-восток. Ты настолько маленький, что тебе кажется, что линия вблизи тебя -- прямая. Производная f'(x) говорит тебе, насколько линия наклонена к направлению на восток в точке x. Т.е. если f'(x) = 2 в точке x где ты стоишь, то если ты пройдёшь 1 шаг на восток, нужно будет пройти 2 шага на север, чтобы вернуться на линию.
Все эти "бесконечно малые" можно интерпретировать как "настолько маленькие, чтобы поведение функции заметно не менялось", т.е. что функция "почти прямая" в этом масштабе, и при дальнейшем уменьшении ничего не меняется.