Можно составить многугольник из отрезков, тогда и только тогда, когда максимальный короче суммы всех остальных. Ну или, максимальный меньше половины суммы всех. Множитель 2 у вас там лишний.
Доказательство элементарно: В противном случае, очевидно, всех остальных сторон не хватит составить путь от двух точек длиннейшего отрезка.
А дальше возьмем окружность у которой этот длиннейший отрезко будет хордой. Приложим все остальные отрезки как хорды подряд. Если их не хватает замкнуть многоугольник, то уменьшим радиус. Если они закрывают суммарно дугу окружности больше, чем между хордой на самом длинном отрезке, то увеличиваем радиус. По какой-нибудь теореме о нуле непрерывной функции где-то существует радиус, для которого все эти отрезки оформятся в выпуклый мноугольник, вписанные в окружность.