Да, задача не имеет вообще ничего общего с тем, что вы написали вначале. Надо найти число подотрезков - то есть, фрагментов последовательности без пропусков. Ограничения "нельзя удлинять отрезок, если сумма достигла M+1" у них нет - они говорят только, что можно и не удлинять. То, что "воспользуемся модулем", не означает, что надо брать сумму модулей - иначе ответ был бы около 50. Вероятно, имеется в виду, что модуль суммы должен быть больше M (из примера этого понять нельзя, в нём нет отрезка с суммой меньше -8).
Могу сказать, что задача совсем непростая. Грубой силой она не решается (требуется N^2/2 сравнений, в секунду не уложитесь).
Я бы делал так. Взять массив частичных сумм (0, a0, a0+a1, ...). Потом сделать log_2(N) копий этого массива (занумерованных индексом k от 1 до log_2(N)), и в каждом из них отсортировать отрезки длиной 2^k. Для массива из задачи это будет выглядеть так:
S0=S[0]=[0,-2,7,10,16,19,27,26,36,30,37]
S[1]=[-2,0, 7,10, 16,19, 26,27, 30,36, 37]
S[2]=[-2,0,7,10, 16,19,26,27, 30,36,37]
S[3]=[-2,0,7,10,16,19,26,27, 30,36,37]
К сожалению, массивы S[1],S[2],S[3] оказались одинаковыми - это потому, что в примере мало отрицательных чисел.
Имея такие массивы, вы легко ответите на вопрос "сколько чисел в фрагменте массива S0[k+1]..S0[N] не принадлежат диапазону S0[k]-M .. S0[k]+M" (время - log(M)^2). Сумма таких ответов для всех k от 0 до M-1 и даст ответ на задачу. Полное время - M*log(M)^2.
UPD. Лучше бы они писали условие по-английски. Было бы не так стыдно за формулировку.