По теореме Пифагора находим расстояние от центра до хорды: d = sqrt(R² − [(x2−x1)² + (y2−y1)²]/4).
Находим середину отрезка AB (назовём её (x3, y3)). Находим направляющий вектор отрезка AB (x4,y4) = ((x2−x1)/|AB|, (y2−y1)/|AB|), и есть два варианта центра — (x0,y0) = (x3±d·y4, y3∓d·x4).
А дальше через atan2 получаем углы, упорядочиваем их и через углы получаем сколько угодно точек.