Эта задача решается алгоритмом "сканирующая прямая".
Представьте что у есть вертикальная линия, которая двигатеся слева-направо непрерывно. В каждый момент времени на прямой могут появиться какие-то прямоугольники, могут закончиться какие-то прямоугольники или ничего не поменяется - в этот момент прямая какие-то прямоугольники пересекает.
Надо взять какую-то хитрую структуру данных, чтобы хранить все открытые (в данном случае - последние закрытые) прямоугольники на прямой. В моменты открытия/закрытия прямоугольников надо структуру данных обновлять или опрашивать.
Тут подойдет что-нибудь вроде std::set в C++ - структура хранящая упорядоченное множество объектов, с доступом и изменением за логарифм, умеющая искать ближайший к заданному значению слева и справа (lower_bound, upper_bound). Хранить в ней мы будем вертикальные отрезки, помеченные номерами их прямоугольникв. Не знаю ее аналоги в других языках - нужно что-то реализованное или на binary search tree, или на skip list.
Когда прямоугольник открывается надо посмотреть, с какими отрезками в set данный отрезок пересекается. Все эти отрезки надо добавить в ответ, удалить полностью покрываемые новым отрезком, а торчащие из него укоротить. Таким образом мы будем поддерживать множество "видимых" отрезков с прямой - ближайших к ней слева.
В этой задаче можно забить на правые границы прямоугольников и на их ширину (раз нет пересечений). Соседями каждого отрезка - левого края будут ближайшие к нему левые края каких-то прямоугольников.
Поэтому вам надо получить все отрезки заданные в виде {x, y1, y2, id} и отсортировать их (сначала по x, потом по y). Потом в этом порядке их обходите и применяйте новый отрезок к структуре данных. Все удаляемые отрезки + 2 пересекающихся сверху и снизу пойдут в список соседних для нового отрезка.
Этот алгоритм за O(n log n) получит всех соседей для всех прямоугольников.
Это что-то похожее вот на эту задачку с
leetcode