половина из всех, то есть 2^9 = 512
выбираем нуль, все числа с 2 единицами, все с 4 единицами и т.д., вплоть до 1111111111. Легко посчитать, что их количество равно 2^9
1 + C(10, 2) + C(10, 4) + C(10, 6) + C(10, 8) + 1 = 512
Почему нельзя больше? При каждом выборе одного слова вычеркиваем 10 соседних (отличающихся от выбранного одним битом). По такому алгоритму каждое слово можно вычеркнуть не более 10 раз. Если выберем более 512, то будет более 5120 отдельных вычерков, а вычеркнутых слов менее 512 (всего 1024), то есть кого-то вычеркнули более 10 раз, противоречие.