www.mat.net.ua/mat/biblioteka/Haggarti-Discretnaya...
Страница 33, пример 2.13
Докажите по индукции, что равенство 1+2+...+n = n(n+1)/2 выполнено при всех натуральных п.
Решение:
Пусть Р{п) — предикат 1+2+...+n = n(n+1)/2.
В случае n — 1 левая часть равенства — просто 1, а вычисляя правую часть, получаем 1(1+1)/2 = 1
Следовательно, Р(1) истинно.
Ну ок. С этим все понятно, подставили, проверили, а дальше?
Предположим теперь, что равенство 1 + 2 +... + к= к(к + 1)/2 - имеет место для какого-то натурального числа к.
Тогда
1 + 2 + ... + к + (к+1) = (1 + 2 + ... + к) + (к + 1) = к(к + 1)/2 + (к + 1) = 1/2 * ( к(к + 1) + 2(к + 1) ) = 1/2 * ( (к+2)(к+1) ) = ((к + 2)(к+1))/2
Таким образом, при любом натуральном к импликация Р(к) -> Р(к + 1)
справедлива. Значит, по принципу математической индукции, предикат Р(n) имеет истинное значение при всех натуральных n.
Я не уловил каким образом к(к+1)/2 будет доказательством ((к+2)(к+1))/2 , если это явно не одно и то же???