Почитав, ваш ответ на мой комментарий, вот какие советы вам дать. То что вы ищете по уровню называется EDA (Explanatory Data Analysis). Это начальный поверхностный анализ, так сказать, глянуть что из себя представляет датасет, и в какую сторону двигаться дальше. Вы используете в нем pandas и matplotlib/seaborn. Если вы не проходили seaborn то ничего страшного, он сделан на matplolib и в целом используется совместно (упрощено говоря matplotlib c улучшенными графиками)
Kaggle это хорошо, там все и возьмете. Например вот
https://www.kaggle.com/code/imoore/intro-to-explor... на kaggle то не только датасеты есть но и notebook'и c кодом, что сообственно я и привел вам ссылке.
Как искать на главной странице сайта есть поиск пишете в нем EDA затем в окошке слева отмечаете галачкой ipynb. И получаете список нотебуков, которые содержат EDA. Большинство нотебуков будут содержать манипуляции с pandas и визуализации matplolib/seaborn и объяснения что все значит. Читайте разбирайтесь, что не понятно и совсем не можете справится спрашивайте.
Это так сказать гайд для вашего случая (когда плохо понимаете с чего вообще начать). Приготовьтесь серьезно потрудится, просто если на курсах не поняли толком ничего не будет.