Предполагается, что всего существует ограниченное количество простых чисел, причем значение каждого из них нам известно: 2, 3, 5, 7 и так далее вплоть до самого большого простого числа P – и всё, больше простых чисел нет. Все остальные (даже очень большие) натуральные числа большие P – числа составные – их можно представить в виде произведения некоторого количества этих простых чисел, каждое из которых может быть взято некоторое количество раз...
Рассмотрим число M: оно больше P, и тогда, исходя из сказанного выше, оно должно быть составным. Но тогда M должно делится на хотя бы на одно простое число из нашего набора известных простых чисел без остатка, а это не так. Следовательно, изначальное утверждение неверно. А неверно оно может быть двумя способами: или M – всё-таки составное, но между P и M существует еще одно или несколько простых чисел больше P, на которые M делится без остатка (например, 2*3*5*7*11*13*17 + 1 = 510511 = 19*97*227 – примеры таких чисел), или само число M – простое (например, 2*3*5*7 + 1 = 211 – 47-е простое число), что впрочем вовсе не значит, что между P и M нет других простых чисел.
В любом случае мы находим простое число большее известного нам "наибольшего простого числа" P, и это число само становится "наибольшим простым числом" – а так как подобную операцию можно проделать с любым "наибольшим простым числом", то получается, что "наибольшего простого числа" не существует, иначе говоря, количество простых чисел бесконечно.