var shortestDistanceNode = (distances, visited) => {
// create a default value for shortest
var shortest = null;
// for each node in the distances object
for (var node of distances.keys()) {
// if no node has been assigned to shortest yet
// or if the current node's distance is smaller than the current shortest
var currentIsShortest = shortest == null || distances.get(node) < distances.get(shortest);
// and if the current node is in the unvisited set
if (currentIsShortest && visited[node] != true) {
//visited[node] == false
// update shortest to be the current node
shortest = node;
}
}
return shortest;
};
var get_distances_from = function(graph, startNode) {
var distances = new Map();
var parents = new Map();
for (var child of graph[startNode].keys()) {
distances.set(child, graph[startNode].get(child))
//console.log(child)
//console.log(child)
parents.set(child, startNode);
}
// collect visited nodes
var visited = {};
visited[startNode] = true;
// find the nearest node
var node = shortestDistanceNode(distances, visited);
// for that node:
while (node) {
// find its distance from the start node & its child nodes
var distance = distances.get(node);
var children = graph[node];
// for each of those child nodes:
for (var child of children.entries()) {
// save the distance from the start node to the child node
var newdistance = distance + child[1];
// if there's no recorded distance from the start node to the child node in the distances object
// or if the recorded distance is shorter than the previously stored distance from the start node to the child node
if (!distances.get(child[0]) || distances.get(child[0]) > newdistance) {
// save the distance to the object
distances.set(child[0], newdistance);
// record the path
parents.set(child[0],node);
}
}
// move the current node to the visited set
visited[node] = true;
// move to the nearest neighbor node
node = shortestDistanceNode(distances, visited);
}
return distances;
};
graph
var findShortestPath = (graph, startNode, endNode) => {
var distances = new Map();
var parents = new Map();
distances.set(endNode, Infinity)
parents.set(endNode, null)
for (var child of graph[startNode].keys()) {
distances.set(child, graph[startNode].get(child))
//console.log(child)
//console.log(child)
parents.set(child, startNode);
}
// collect visited nodes
var visited = {};
visited[startNode] = true;
// find the nearest node
var node = shortestDistanceNode(distances, visited);
// for that node:
while (node) {
// find its distance from the start node & its child nodes
var distance = distances.get(node);
var children = graph[node];
// for each of those child nodes:
for (var child of children.entries()) {
// save the distance from the start node to the child node
var newdistance = distance + child[1];
// if there's no recorded distance from the start node to the child node in the distances object
// or if the recorded distance is shorter than the previously stored distance from the start node to the child node
if (!distances.get(child[0]) || distances.get(child[0]) > newdistance) {
// save the distance to the object
distances.set(child[0], newdistance);
// record the path
parents.set(child[0],node);
}
}
// move the current node to the visited set
visited[node] = true;
// move to the nearest neighbor node
node = shortestDistanceNode(distances, visited);
}
// using the stored paths from start node to end node
// record the shortest path
var shortestPath = [endNode];
var parent = parents.get(endNode);
while (parent) {
shortestPath.push(parent);
parent = parents.get(parent);
}
shortestPath.reverse();
//this is the shortest path
var results = {
distance: distances.get(endNode),
path: shortestPath,
//all_distances: distances
};
// return the shortest path & the end node's distance from the start node
return results;
};
var findShortestPath = (graph, startNode, endNode) => {
var distances = new Map();
var parents = new Map();
var queue = new PriorityQueue();
queue.add(startNode, 0);
distances.set(startNode, 0);
distances.set(endNode, Infinity)
parents.set(endNode, null)
for (var child of graph[startNode].keys()) {
distances.set(child, graph[startNode].get(child))
}
// collect visited nodes
var visited = {};
visited[startNode] = true;
// find the nearest node
var node = queue.poll();
// for that node:
while (node) {
// find its distance from the start node & its child nodes
var distance = distances.get(node);
var children = graph[node];
// for each of those child nodes:
for (var child of children.entries()) {
// save the distance from the start node to the child node
var newdistance = distance + child[1];
// if there's no recorded distance from the start node to the child node in the distances object
// or if the recorded distance is shorter than the previously stored distance from the start node to the child node
if (!distances.get(child[0]) || distances.get(child[0]) > newdistance) {
// save the distance to the object
distances.set(child[0], newdistance);
// record the path
parents.set(child[0], node);
if (queue.hasValue(child[0])) {
queue.changePriority(child[0], newdistance);
}
}
}
// move the current node to the visited set
visited[node] = true;
// move to the nearest neighbor node
node = queue.poll()
}
// using the stored paths from start node to end node
// record the shortest path
var shortestPath = [endNode];
var parent = parents.get(endNode);
while (parent) {
shortestPath.push(parent);
parent = parents.get(parent);
}
shortestPath.reverse();
//this is the shortest path
var results = {
distance: distances.get(endNode),
path: shortestPath,
//all_distances: distances
};
// return the shortest path & the end node's distance from the start node
return results;
};
for (var child of graph[startNode].keys())
не нужен.var findShortestPath = (graph, startNode, endNode) => {
var distances = new Map();
var parents = new Map();
var queue = new PriorityQueue();
queue.add(startNode, 0);
distances.set(startNode, 0);
distances.set(endNode, Infinity)
parents.set(endNode, null)
/*
for (var child of graph[startNode].keys()) {
distances.set(child, graph[startNode].get(child))
}
*/
// collect visited nodes
var visited = {};
visited[startNode] = true;
// find the nearest node
var node = queue.poll();
// for that node:
while (node) {
// find its distance from the start node & its child nodes
var distance = distances.get(node);
var children = graph[node];
// for each of those child nodes:
for (var child of children.entries()) {
// save the distance from the start node to the child node
var newdistance = distance + child[1];
// if there's no recorded distance from the start node to the child node in the distances object
// or if the recorded distance is shorter than the previously stored distance from the start node to the child node
if (!distances.get(child[0]) || distances.get(child[0]) > newdistance) {
// save the distance to the object
distances.set(child[0], newdistance);
// record the path
parents.set(child[0], node);
if (queue.hasValue(child[0])) {
queue.changePriority(child[0], newdistance);
} else {
queue.add(child[0], newdistance);
}
}
}
// move the current node to the visited set
visited[node] = true;
// move to the nearest neighbor node
node = queue.poll()
}
// using the stored paths from start node to end node
// record the shortest path
var shortestPath = [endNode];
var parent = parents.get(endNode);
while (parent) {
shortestPath.push(parent);
parent = parents.get(parent);
}
shortestPath.reverse();
//this is the shortest path
var results = {
distance: distances.get(endNode),
path: shortestPath,
//all_distances: distances
};
// return the shortest path & the end node's distance from the start node
return results;
};
newdistance
, а -newdistance
.var test_queue = new PriorityQueue();
test_queue.add('a', 1);
test_queue.add('c', 5);
test_queue.add('b', 3);
console.log(test_queue.poll()) // return a
console.log(test_queue.poll()) // return b
console.log(test_queue.poll()) // return c
// It is the same as min heap except that when comparing two elements
// we take into account its priority instead of the element's value.
class PriorityQueue extends MinHeap {
constructor() {
// Call MinHip constructor first.
super();
// Setup priorities map.
this.priorities = new Map();
// Use custom comparator for heap elements that will take element priority
// instead of element value into account.
this.compare = new Comparator(this.comparePriority.bind(this));
}
/**
* Add item to the priority queue.
* @param {*} item - item we're going to add to the queue.
* @param {number} [priority] - items priority.
* @return {PriorityQueue}
*/
add(item, priority = 0) {
this.priorities.set(item, priority);
super.add(item);
return this;
}
/**
* Remove item from priority queue.
* @param {*} item - item we're going to remove.
* @param {Comparator} [customFindingComparator] - custom function for finding the item to remove
* @return {PriorityQueue}
*/
remove(item, customFindingComparator) {
super.remove(item, customFindingComparator);
this.priorities.delete(item);
return this;
}
/**
* Change priority of the item in a queue.
* @param {*} item - item we're going to re-prioritize.
* @param {number} priority - new item's priority.
* @return {PriorityQueue}
*/
changePriority(item, priority) {
this.remove(item, new Comparator(this.compareValue));
this.add(item, priority);
return this;
}
/**
* Find item by ite value.
* @param {*} item
* @return {Number[]}
*/
findByValue(item) {
return this.find(item, new Comparator(this.compareValue));
}
/**
* Check if item already exists in a queue.
* @param {*} item
* @return {boolean}
*/
hasValue(item) {
return this.findByValue(item).length > 0;
}
/**
* Compares priorities of two items.
* @param {*} a
* @param {*} b
* @return {number}
*/
comparePriority(a, b) {
if (this.priorities.get(a) === this.priorities.get(b)) {
return 0;
}
return this.priorities.get(a) < this.priorities.get(b) ? -1 : 1;
}
/**
* Compares values of two items.
* @param {*} a
* @param {*} b
* @return {number}
*/
compareValue(a, b) {
if (a === b) {
return 0;
}
return a < b ? -1 : 1;
}
}
import Heap from './Heap';
export default class MinHeap extends Heap {
/**
* Checks if pair of heap elements is in correct order.
* For MinHeap the first element must be always smaller or equal.
* For MaxHeap the first element must be always bigger or equal.
*
* @param {*} firstElement
* @param {*} secondElement
* @return {boolean}
*/
pairIsInCorrectOrder(firstElement, secondElement) {
return this.compare.lessThanOrEqual(firstElement, secondElement);
}
}
import Comparator from '../../utils/comparator/Comparator';
/**
* Parent class for Min and Max Heaps.
*/
export default class Heap {
/**
* @constructs Heap
* @param {Function} [comparatorFunction]
*/
constructor(comparatorFunction) {
if (new.target === Heap) {
throw new TypeError('Cannot construct Heap instance directly');
}
// Array representation of the heap.
this.heapContainer = [];
this.compare = new Comparator(comparatorFunction);
}
/**
* @param {number} parentIndex
* @return {number}
*/
getLeftChildIndex(parentIndex) {
return (2 * parentIndex) + 1;
}
/**
* @param {number} parentIndex
* @return {number}
*/
getRightChildIndex(parentIndex) {
return (2 * parentIndex) + 2;
}
/**
* @param {number} childIndex
* @return {number}
*/
getParentIndex(childIndex) {
return Math.floor((childIndex - 1) / 2);
}
/**
* @param {number} childIndex
* @return {boolean}
*/
hasParent(childIndex) {
return this.getParentIndex(childIndex) >= 0;
}
/**
* @param {number} parentIndex
* @return {boolean}
*/
hasLeftChild(parentIndex) {
return this.getLeftChildIndex(parentIndex) < this.heapContainer.length;
}
/**
* @param {number} parentIndex
* @return {boolean}
*/
hasRightChild(parentIndex) {
return this.getRightChildIndex(parentIndex) < this.heapContainer.length;
}
/**
* @param {number} parentIndex
* @return {*}
*/
leftChild(parentIndex) {
return this.heapContainer[this.getLeftChildIndex(parentIndex)];
}
/**
* @param {number} parentIndex
* @return {*}
*/
rightChild(parentIndex) {
return this.heapContainer[this.getRightChildIndex(parentIndex)];
}
/**
* @param {number} childIndex
* @return {*}
*/
parent(childIndex) {
return this.heapContainer[this.getParentIndex(childIndex)];
}
/**
* @param {number} indexOne
* @param {number} indexTwo
*/
swap(indexOne, indexTwo) {
const tmp = this.heapContainer[indexTwo];
this.heapContainer[indexTwo] = this.heapContainer[indexOne];
this.heapContainer[indexOne] = tmp;
}
/**
* @return {*}
*/
peek() {
if (this.heapContainer.length === 0) {
return null;
}
return this.heapContainer[0];
}
/**
* @return {*}
*/
poll() {
if (this.heapContainer.length === 0) {
return null;
}
if (this.heapContainer.length === 1) {
return this.heapContainer.pop();
}
const item = this.heapContainer[0];
// Move the last element from the end to the head.
this.heapContainer[0] = this.heapContainer.pop();
this.heapifyDown();
return item;
}
/**
* @param {*} item
* @return {Heap}
*/
add(item) {
this.heapContainer.push(item);
this.heapifyUp();
return this;
}
/**
* @param {*} item
* @param {Comparator} [comparator]
* @return {Heap}
*/
remove(item, comparator = this.compare) {
// Find number of items to remove.
const numberOfItemsToRemove = this.find(item, comparator).length;
for (let iteration = 0; iteration < numberOfItemsToRemove; iteration += 1) {
// We need to find item index to remove each time after removal since
// indices are being changed after each heapify process.
const indexToRemove = this.find(item, comparator).pop();
// If we need to remove last child in the heap then just remove it.
// There is no need to heapify the heap afterwards.
if (indexToRemove === (this.heapContainer.length - 1)) {
this.heapContainer.pop();
} else {
// Move last element in heap to the vacant (removed) position.
this.heapContainer[indexToRemove] = this.heapContainer.pop();
// Get parent.
const parentItem = this.parent(indexToRemove);
// If there is no parent or parent is in correct order with the node
// we're going to delete then heapify down. Otherwise heapify up.
if (
this.hasLeftChild(indexToRemove)
&& (
!parentItem
|| this.pairIsInCorrectOrder(parentItem, this.heapContainer[indexToRemove])
)
) {
this.heapifyDown(indexToRemove);
} else {
this.heapifyUp(indexToRemove);
}
}
}
return this;
}
/**
* @param {*} item
* @param {Comparator} [comparator]
* @return {Number[]}
*/
find(item, comparator = this.compare) {
const foundItemIndices = [];
for (let itemIndex = 0; itemIndex < this.heapContainer.length; itemIndex += 1) {
if (comparator.equal(item, this.heapContainer[itemIndex])) {
foundItemIndices.push(itemIndex);
}
}
return foundItemIndices;
}
/**
* @return {boolean}
*/
isEmpty() {
return !this.heapContainer.length;
}
/**
* @return {string}
*/
toString() {
return this.heapContainer.toString();
}
/**
* @param {number} [customStartIndex]
*/
heapifyUp(customStartIndex) {
// Take the last element (last in array or the bottom left in a tree)
// in the heap container and lift it up until it is in the correct
// order with respect to its parent element.
let currentIndex = customStartIndex || this.heapContainer.length - 1;
while (
this.hasParent(currentIndex)
&& !this.pairIsInCorrectOrder(this.parent(currentIndex), this.heapContainer[currentIndex])
) {
this.swap(currentIndex, this.getParentIndex(currentIndex));
currentIndex = this.getParentIndex(currentIndex);
}
}
/**
* @param {number} [customStartIndex]
*/
heapifyDown(customStartIndex = 0) {
// Compare the parent element to its children and swap parent with the appropriate
// child (smallest child for MinHeap, largest child for MaxHeap).
// Do the same for next children after swap.
let currentIndex = customStartIndex;
let nextIndex = null;
while (this.hasLeftChild(currentIndex)) {
if (
this.hasRightChild(currentIndex)
&& this.pairIsInCorrectOrder(this.rightChild(currentIndex), this.leftChild(currentIndex))
) {
nextIndex = this.getRightChildIndex(currentIndex);
} else {
nextIndex = this.getLeftChildIndex(currentIndex);
}
if (this.pairIsInCorrectOrder(
this.heapContainer[currentIndex],
this.heapContainer[nextIndex],
)) {
break;
}
this.swap(currentIndex, nextIndex);
currentIndex = nextIndex;
}
}
/**
* Checks if pair of heap elements is in correct order.
* For MinHeap the first element must be always smaller or equal.
* For MaxHeap the first element must be always bigger or equal.
*
* @param {*} firstElement
* @param {*} secondElement
* @return {boolean}
*/
/* istanbul ignore next */
pairIsInCorrectOrder(firstElement, secondElement) {
throw new Error(`
You have to implement heap pair comparision method
for ${firstElement} and ${secondElement} values.
`);
}
}
for (var child of graph[startNode].keys()) {
, то переполнение не происходит, но путь тем не менее не находится или находится, но явно не тот, что нужен while (parent) {
shortestPath.push(parent);
parent = parents.get(parent);
}
var findShortestPath = (graph, startNode, endNode) => {
var distances = new Map();
var parents = new Map();
var queue = new PriorityQueue();
queue.add(startNode, 0);
distances.set(startNode, 0);
distances.set(endNode, Infinity)
parents.set(endNode, null)
/*
for (var child of graph[startNode].keys()) {
distances.set(child, graph[startNode].get(child))
}
*/
// find the nearest node
var node = queue.poll();
console.log('first_node', node)
// for that node:
while (node) {
console.log('current_node', node)
// find its distance from the start node & its child nodes
var distance = distances.get(node);
var children = graph[node];
console.log("node's distance:", distance)
console.log("node's children:", children)
// for each of those child nodes:
for (var child of children.entries()) {
// save the distance from the start node to the child node
var newdistance = distance + child[1];
// if there's no recorded distance from the start node to the child node in the distances object
// or if the recorded distance is shorter than the previously stored distance from the start node to the child node
if (!distances.get(child[0]) || distances.get(child[0]) > newdistance) {
// save the distance to the object
distances.set(child[0], newdistance);
// record the path
parents.set(child[0], node);
if (queue.hasValue(child[0])) {
queue.changePriority(child[0], newdistance);
} else {
queue.add(child[0], newdistance);
}
}
}
// move to the nearest neighbor node
node = queue.poll()
}
// using the stored paths from start node to end node
// record the shortest path
console.log("distances", distances)
console.log("parents:", parents)
var shortestPath = [endNode];
var parent = parents.get(endNode);
while (parent) {
shortestPath.push(parent);
parent = parents.get(parent);
}
shortestPath.reverse();
//this is the shortest path
var results = {
distance: distances.get(endNode),
path: shortestPath,
//all_distances: distances
};
// return the shortest path & the end node's distance from the start node
return results;
};
var test_graph = [
'none',
new Map([
[2, 1],
[3, 3],
[4, 4]
]),
new Map([
[1, 2],
[3, 4],
[4, 6]
]),
new Map([
[1, 3],
[2, 5],
[4, 11]
]),
new Map([
[3, 14]
]),
]
console.log(test_graph)
var path = findShortestPath(test_graph, 1, 3)
console.log(path)
queue.poll()
работает правильно, видимо я посещенную вершину заново добавляю в очередь if (!distances.get(child[0]) || distances.get(child[0]) > newdistance)
if (!distances.get(child[0]) || distances.get(child[0]) > newdistance)
Я заменил на if (distances.get(child[0]) == undefined || distances.get(child[0]) > newdistance)
и всё заработало! /**
* Parent class for Min and Max Heaps.
*/
class Heap {
/**
* @constructs Heap
* @param {Function} [comparatorFunction]
*/
constructor(comparatorFunction) {
if (new.target === Heap) {
throw new TypeError('Cannot construct Heap instance directly');
}
// Array representation of the heap.
this.heapContainer = [];
this.compare = new Comparator(comparatorFunction);
this.indexes = new Map();
}
/**
* @param {number} parentIndex
* @return {number}
*/
getLeftChildIndex(parentIndex) {
return (2 * parentIndex) + 1;
}
/**
* @param {number} parentIndex
* @return {number}
*/
getRightChildIndex(parentIndex) {
return (2 * parentIndex) + 2;
}
/**
* @param {number} childIndex
* @return {number}
*/
getParentIndex(childIndex) {
return Math.floor((childIndex - 1) / 2);
}
/**
* @param {number} childIndex
* @return {boolean}
*/
hasParent(childIndex) {
return this.getParentIndex(childIndex) >= 0;
}
/**
* @param {number} parentIndex
* @return {boolean}
*/
hasLeftChild(parentIndex) {
return this.getLeftChildIndex(parentIndex) < this.heapContainer.length;
}
/**
* @param {number} parentIndex
* @return {boolean}
*/
hasRightChild(parentIndex) {
return this.getRightChildIndex(parentIndex) < this.heapContainer.length;
}
/**
* @param {number} parentIndex
* @return {*}
*/
leftChild(parentIndex) {
return this.heapContainer[this.getLeftChildIndex(parentIndex)];
}
/**
* @param {number} parentIndex
* @return {*}
*/
rightChild(parentIndex) {
return this.heapContainer[this.getRightChildIndex(parentIndex)];
}
/**
* @param {number} childIndex
* @return {*}
*/
parent(childIndex) {
return this.heapContainer[this.getParentIndex(childIndex)];
}
/**
* @param {number} indexOne
* @param {number} indexTwo
*/
swap(indexOne, indexTwo) {
const tmp = this.heapContainer[indexTwo];
this.heapContainer[indexTwo] = this.heapContainer[indexOne];
this.indexes.set(indexTwo, this.heapContainer[indexOne])
this.heapContainer[indexOne] = tmp;
this.indexes.set(indexOne, tmp)
}
/**
* @return {*}
*/
peek() {
if (this.heapContainer.length === 0) {
return null;
}
return this.heapContainer[0];
}
/**
* @return {*}
*/
poll() {
if (this.heapContainer.length === 0) {
return null;
}
if (this.heapContainer.length === 1) {
return this.heapContainer.pop();
}
const item = this.heapContainer[0];
this.indexes.delete(item)
// Move the last element from the end to the head.
this.heapContainer[0] = this.heapContainer.pop();
this.heapifyDown();
return item;
}
/**
* @param {*} item
* @return {Heap}
*/
add(item) {
this.indexes.set(item, this.heapContainer.length)
this.heapContainer.push(item);
this.heapifyUp();
return this;
}
/**
* @param {*} item
* @param {Comparator} [comparator]
* @return {Heap}
*/
remove(item, comparator = this.compare) {
// Find number of items to remove.
const numberOfItemsToRemove = this.find(item, comparator).length;
for (let iteration = 0; iteration < numberOfItemsToRemove; iteration += 1) {
// We need to find item index to remove each time after removal since
// indices are being changed after each heapify process.
const indexToRemove = this.find(item, comparator).pop();
// If we need to remove last child in the heap then just remove it.
// There is no need to heapify the heap afterwards.
if (indexToRemove === (this.heapContainer.length - 1)) {
this.heapContainer.pop();
} else {
// Move last element in heap to the vacant (removed) position.
this.heapContainer[indexToRemove] = this.heapContainer.pop();
// Get parent.
const parentItem = this.parent(indexToRemove);
// If there is no parent or parent is in correct order with the node
// we're going to delete then heapify down. Otherwise heapify up.
if (
this.hasLeftChild(indexToRemove)
&& (
!parentItem
|| this.pairIsInCorrectOrder(parentItem, this.heapContainer[indexToRemove])
)
) {
this.heapifyDown(indexToRemove);
} else {
this.heapifyUp(indexToRemove);
}
}
this.indexes.delete(item)
}
return this;
}
/**
* @param {*} item
* @param {Comparator} [comparator]
* @return {Number[]}
*/
find(item, comparator = this.compare) {
/*
const foundItemIndices = [];
for (let itemIndex = 0; itemIndex < this.heapContainer.length; itemIndex += 1) {
if (comparator.equal(item, this.heapContainer[itemIndex])) {
foundItemIndices.push(itemIndex);
}
}
return foundItemIndices;
*/
var foundItemIndices = [];
var index = this.indexes.get(item)
if (index != undefined && index != null) {
foundItemIndices.push(index)
}
return foundItemIndices
}
/**
* @return {boolean}
*/
isEmpty() {
return !this.heapContainer.length;
}
/**
* @return {string}
*/
toString() {
return this.heapContainer.toString();
}
/**
* @param {number} [customStartIndex]
*/
heapifyUp(customStartIndex) {
// Take the last element (last in array or the bottom left in a tree)
// in the heap container and lift it up until it is in the correct
// order with respect to its parent element.
let currentIndex = customStartIndex || this.heapContainer.length - 1;
while (
this.hasParent(currentIndex)
&& !this.pairIsInCorrectOrder(this.parent(currentIndex), this.heapContainer[currentIndex])
) {
this.swap(currentIndex, this.getParentIndex(currentIndex));
currentIndex = this.getParentIndex(currentIndex);
}
}
/**
* @param {number} [customStartIndex]
*/
heapifyDown(customStartIndex = 0) {
// Compare the parent element to its children and swap parent with the appropriate
// child (smallest child for MinHeap, largest child for MaxHeap).
// Do the same for next children after swap.
let currentIndex = customStartIndex;
let nextIndex = null;
while (this.hasLeftChild(currentIndex)) {
if (
this.hasRightChild(currentIndex)
&& this.pairIsInCorrectOrder(this.rightChild(currentIndex), this.leftChild(currentIndex))
) {
nextIndex = this.getRightChildIndex(currentIndex);
} else {
nextIndex = this.getLeftChildIndex(currentIndex);
}
if (this.pairIsInCorrectOrder(
this.heapContainer[currentIndex],
this.heapContainer[nextIndex],
)) {
break;
}
this.swap(currentIndex, nextIndex);
currentIndex = nextIndex;
}
}
/**
* Checks if pair of heap elements is in correct order.
* For MinHeap the first element must be always smaller or equal.
* For MaxHeap the first element must be always bigger or equal.
*
* @param {*} firstElement
* @param {*} secondElement
* @return {boolean}
*/
/* istanbul ignore next */
pairIsInCorrectOrder(firstElement, secondElement) {
throw new Error(`
You have to implement heap pair comparision method
for ${firstElement} and ${secondElement} values.
`);
}
}
this.indexes.set(this.heapContainer[indexOne], indexOne);
this.indexes.set(this.heapContainer[indexTwo], indexTwo);
this.indexes.set(this.heapContainer[0], 0);
indexes[heapContainer[indexToRemove]] = indexToRemove;
сделать.get_dists()
)Насколько я понял, это значит, что я обращаюсь к чему-то неинициализированному. Может c++ как-то на это не обращал внимание, но wasm чувствителен.