Существуют.
Кажется первопроходцем был Reuters. Решение основано на использовании методов машинного обучения. Сначала на соответствующем наборе размеченных статей строиться некоторый классификатор. Затем он используется для отнесения новых статей к той или иной рубрике или рубрикам, что в точности соответствует задаче тегирования.
Ну вот, на вскидку, просто как пример:
https://towardsdatascience.com/applying-machine-le...
Elaslic тут очень далеко - только как хранилище информации.
Кстати, Reuters хвастался что он на внедрении этого метода экономит миллионы, в основном на зарплате разогнанного отдела почти на сотню сотрудников, которые ранее там тегировали новости вручную.