Следует понимать тот факт, что нет прямой жёсткой связи между той математикой, что бывает на олимпиадах и той, что может присутствовать на вступительных экзаменах (или последние уже везде отменили и теперь только ЕГЭ?). Там нужны разные навыки и разные знания.
Если вопрос о подготовке к экзаменам, то в дополнение к ранее написанному могу посоветовать брать номера журнала Квант (был когда-то такой). Там есть хорошие статьи, хорошие задачи (разного уровня и назначения, со вступительных экзаменов, в том числе). Причём и по математике и по физике. Я сам когда готовился к поступлению на мехмат МГУ в 1978, использовал их для подготовки (хотя не только их). Были там материалы и пригодные для изучения в целях участия в олимпиаде. По пособиям. Они бывают разного качества. Хорошие - редко встречаются. Оценить самостоятельно не так просто, нужен опыт. Я когда занимался репетиторством, использовал свои разработки.
По олимпиадам. Советую найти книги издательства "Мир" - у них была специальная серия, где, в основном, выпускали книжки по олимпиадам (американские, венгерские, польские...). Можно посмотреть их не только в плане того, что на таких олимпиадах бывает, но там ещё были справочные материалы по тем темам, на которые были задачи, но что обычно отсутствует в курсе школьной математики.
Ещё немного дополнений к спискам выше. У Оре была книжка по теории графов, написана доступно. У него же и введение в теорию чисел имеется. Ещё элементарные введения в теорию чисел есть у Виноградова (только задачки оттуда пытаться решать не советую - не выйдет; только примеры) и Дэвенпорта. Ссылок не даю, у меня всё это в бумажном виде, но Гугль поможет.
Можно было бы ещё кое-что посоветовать, но времени на освоение и так не слишком много.