andrev2andrev2
@andrev2andrev2

Нужна нейросеть, которая сможет выбрать оптимальный вариант удаления фона?

Есть общедоступная библиотека, которая удаляет фон у изображения.
Библиотека создает 4 варианта удаления.
Каждый вариант, хорошо обрабатывает только определенные типы изображений.
Какой-то животных, какой-то здания и т.д.
Необходима нейросеть, которая сможет “посмотреть“ на получившиеся изображения и выбрать в каком варианте фон удален максимально качественно.

В сторону каких продуктов можно посмотреть?
  • Вопрос задан
  • 273 просмотра
Решения вопроса 1
@rPman
Универсально таких нет

Это значит тебе нужно набрать свой обучающий датасет из изображений, которые будут использоваться в твоей задаче, и вручную их разметить, указав, где правильно удалился фон, затем создать нейросеть классификатор изображений и обучить ее на своем датасете. Инструментов полно но если хочешь (а ты захочешь) использовать gpu для ускорения, то скорее всего это будет nvidia и pytorch (есть не только для питона)

Какую именно выбрать датасет это вопрос исследования, какая подойдет для твоей задачи. Например если ты будешь обучать бинарный классификатор - хорошо/плохо (или при разметке ты будешь оценивать по какой то шкале например от 0 до 10 результат работы) то это одна задача, но ты можешь к примеру подавать на вход сразу все четыре изображения, и сеть должна выдать делить на 4 класса полученный комплекс, соответственно каждому изображению... совет, добавляй ко входу еще и исходное изображение.

Можно предварительно делать вычитание (или деление) исходного и результирующего изображений, так нейросети легче будет понимать что было вычтено и соотносить его с исходным

Можно предварительно обучить сеть на входных и обработанных изображениях, но не с целью получения результата, а с целью найти закономерности (мне нравится вариант когда на вход сети и на выход подается одно и то же изображение или пара, сеть многослойная но размерность средних слоев сделать меньше количества входов, т.е. нейросеть должна будет научиться упаковывать информацию об изображении в меньший объем, это вынудит ее искать закономерности.. затем левую половину полученной сети до сужения размерности можно скопировать в искомую сеть как первые слои (добавить еще несколько) и уже обучать как классификатор под твою задачу, эта предобученная сеть будет лучше решать задачу.
Ответ написан
Пригласить эксперта
Ваш ответ на вопрос

Войдите, чтобы написать ответ

Похожие вопросы