Похоже автор напутал. Слышал где-то про логарифмический алгоритм, знает, что за логарифм обычно работают сбалансированные бинарные деревья, вот и связал это воедино.
В случае с трассировкой лучей, за логарифм нет реализации вообще - ибо у невыпуклого многоугольника может быть O(n) пересечений с лучем (представьте себе пилу).
В случае с ближайшей точкой - если и есть структура, то это то-то вроде trapezoidal map - это такая мозговыносящая штука, что не советую о ней даже думать. Нужно разбить пространство на области, ближайшие к каждой стороне.
За логарифм есть решение через бинарный поиск.
Разбейте пространство на вертикальные колонны всеми x координатами всех вершин многоугольника. Внутри каждой из них будет проходить четное количество сторон. Составьте для каждой стороны уравнение и отсортируйте их по высоте.
При запросе, сначала бинпоиском найдите, в какой колонне лежит точка. Потом еще одним бинпоиском найдите, между какими из двух прямых лежит точка. Тут сравнения будут уже непросто чисел, а надо будет подставлять точку в уравнения прямых и смотреть, лежит ли точка выше или ниже. Если точка лежит так, что выше ее (и ниже) нечетное количество прямых - то точка внутри.
Проблема этого метода, что он требует O(n^2) памяти в худшем случае и такую же предобработку.
Но, для выпуклых многоугольников, прямых в каждой колонне будет всего две.
Вот описание метода с реализацией для этого упрощенного случая.