@maxefect

Как вычисляются поверхностные интегралы, а именно поток через определенную фигуру?

У меня дан куб, от начала координат до углов в точках равных единице, как сосчитать непосредственно поток через этот куб?
Дано: куб, векторное поле F(x^2-z, z+y, x-y)

Решение:
1. Через формулу Остроградского-Гаусса я вроде как сосчитал, то есть
ТройнойИнтгерал(divF)dxdydz = ТройнойИнтгерал((x^2)' + (z+y)' + (x-y)')dxdydz = ТройнойИнтгерал(2x + 1 + 0)dxdydz = Интеграл(2x+1)dx*Интеграл(dy)| {0 <= y <= 1}*Интеграл(dz)| {0 <= z <= 1} = Интеграл(2x+2)dx = x^2| {0 <= x <= 1} + x| {0 <= x <= 1} = 1 + 1. В итоге равно 2
  • Вопрос задан
  • 2716 просмотров
Пригласить эксперта
Ваш ответ на вопрос

Войдите, чтобы написать ответ

Похожие вопросы
ФЛАЙ НЭТ Москва
от 70 000 до 70 000 ₽
CodeX Нижний Новгород
от 30 000 до 80 000 ₽
Альмед Красноярск
от 400 000 ₽
27 нояб. 2024, в 12:53
70000 руб./за проект
27 нояб. 2024, в 12:50
25000 руб./за проект