Круг:
(x - x0)^2+(y-y0)^2 < R^2 - множество точек внутри круга
(x - x0)^2+(y-y0)^2 > R^2 - множество точек вне круга
R - радиус круга, x0, y0 - координаты центра
Эллипс:
((x - x0)/a)^2+((y-y0)/b)^2 < 1 - множество точек внутри эллипса
((x - x0)/a)^2+((y-y0)/b)^2 > 1 - множество точек вне эллипса
a, b - радиусы эллипса
Прямые:
x < 0 - множество точек левее оси 0Y
x > 0 - множество точек правее оси 0Y
y < 0 - множество точек ниже оси 0X
y > 0 - множество точек выше оси 0X
ax+by < c множество точек ниже прямой, заданной уравнением ax+by = с
ax+by > c множество точек выше прямой, заданной уравнением ax+by = с
Для вашей задачи:
1. Находите нужные коэффициенты для всех прямых и кривых.
2. Выясняете для каждого уравнения знак, который получается при попадании точки в заштрихованной области
3. Создаёте набор тестов для точки.
Например для зоны B:
Точка должна быть внутри круга, вне эллипса и выше прямой, то есть должны выполняться следующие неравенства (коэффициенты a, b x0, y0 для каждого неравенства свои):
(x - x0)^2+(y-y0)^2 < R^2
((x - x0)/a)^2+((y-y0)/b)^2 > 1
ax+by > c
Дальше для тестовой точки проверяете неравенства, и если они все правильные - точка принадлежит заштрихованной области.