А здесь основная работа - это препроцессинг данных. По нейронкам это RNN. И это наверное процентов 5 времени, все остальное это подготовка данных. Конвертации времени в сигналы, нормализации, оконные функции, правильные сплиты и т.д. Time Series предполагает очень сложный препроцессинг.
Если задача с временной последовательностью, то нужно тратить время, на изучение необходимых трансформаций. А сама нейронка это ерунда.
Ну и не много не в тему вопроса, при работе с ts я бы вообще не использовал нейронные сети. Нейронные сети не являются интерпретируемыми моделями. Что это значит? Например у меня есть параметры на вход и один из них ну скажем пускай будет средняя скользящая за неделю, так вот я никогда не смогу сформулировать взаимоотношения между отдельно взятым предиктором в данном случае (средней скользящей) и целью пусть будет цена акции. По этому я бы смотрел в сторону GAM (General Additive Models). Все regressive модели их много это подсеты GAM, когда речь идет о ts то появляется приставка auto. Так вот там можно сформулировать взаимоотношения между отдельным предиктором и целью, а на длинной дистанции это очень важно. GAM это класс моделей а не отдельно взятый алгоритм.