Ну информации вы даете мало, а сделать для увеличения точности можно много всего.
1. Трансформации, кейс ваш простой, все входные данные числовые. (Нормализация, Стандартизация), как делать смотрите
https://scikit-learn.org/stable/modules/preprocess... там хорошие примеры как правильно применять StandardScaller min_max_scalar в общем приведение ваших входных данных к единой шкале.
2. Увеличение сложности модели здесь мы говорим о bias vs variance компромисс Мы имеем простую модель или сложную модель. Например поведение простой модели слабая точность на тренировочном сете и еще более слабая точность на тестовом сете, такое поведение называется underfitting или говорят еще high bias. В свою очередь high variance или overfitting это высокие показатели на тренировочном сете и значительно более низкие на тестовом сете. Что делать читаем и изучаем
https://scikit-learn.org/stable/modules/generated/... это трансформатор и затем
https://scikit-learn.org/stable/auto_examples/mode... это кривая валидации в интернете полно примеров как применять. Через них находится оптимальная сложность модели.
3. Тюнинг гиперпарматров
https://scikit-learn.org/stable/modules/grid_searc... это как осуществить правильный подбор параметров эстиматора (когда уже сделаны нужные трансформации и выбрана модель).
Перед этим сделайте ну хоть какое то подобие EDA используйте seaborn и функцию pairplot хоть глянуть может какие то корреляции есть. По гуглите другие методы EDA для задач регрессии это задаст направление для лучшего понимания датасета что у вас есть.
Начните делать появятся более конкретные вопросы и будут более конкретные ответы.