Ответ на это вопрос очевиден, если знать, что такое фильтр сверточного слоя в нейронных сетях. В случае с изображениями - это трехмерный тензор (матрица), вот так вот просто, никакой магии. А теперь конкретика и умножение целых чисел.
На входе идут изображения 100х100х3. Размер ядра фильтра 3х3, значит, каждый фильтр имеет размер 3х3х3, всего их 16 штук, следовательно ((3*3*3) + 1) * 16 = 448 обучаемых коэффициентов (trainable parameter). Потом макспулинг, размер уменьшается до 50х50, количество фильтров не меняется. Выход имеет размер 50х50х16. Фильтры применяются к изображению 100*100*16 = 160к раз. Выход - это результат применения фильтров к изображению, т.е. новое изображение, именно оно подается дальше, никакие фильтры тут дальше не передаются. Фильтры - это как распылитель на покрасочном конвейере, распылитель наносит краску на деталь, фильтр преобразует изображение. Как может фильтр передаваться дальше? Никак. Это противоестественно.
Потом идут новые 32 фильтра с ядром 3х3 и размером 3х3х16. Следовательно, ((3*3*16) + 1) * 32 = 4460 обучаемых коэффициентов. Фильтры применяются к изображению 50*50*32 = 80к раз. Выход перед макспулингом имеет размер 50х50х32. Потом опять макспулинг или флэттен слой (flatten).
По итогу общее количество фильтров = 16 + 32. Общее количество обучаемых параметров = 448 + 4460. Фильтры помножены на изображение 240к раз. Вот только в этом маленьком кусочке из двух сверточных слоев (conv2d).