keras_model = Sequential()
keras_model.add(Dense(14, activity_regularizer=regularizers.l1(10e-5), input_shape=(1,)))
keras_model.add(Activation('relu'))
keras_model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])
keras_model.fit(x_train, x_train,
epochs=nb_epoch,
batch_size=batch_size,
shuffle=True,
validation_data=(x_test, x_test),
verbose=1)