Задать вопрос

Как правильно приготовить питоном параллельную индексацию в ElasticSearch?

Есть задача - максимально быстро создать индекс в Elasticsearch.
На входе - данные, приготовленные питоном.
На выходе - созданный с нуля индекс.

Инфраструктура пока самая простая - один нод ES, один индекс, один шард без реплик.
Данных немного, 100К документов, но есть геоданные, ES индексирует единицы документов в секунду.
Кормление ES идет с помощью elasticutils в цикле (т.е. синхронно) в bulk режиме.

Проблема - построение индекса занимает 10 часов, хотелось бы время уменьшить в разы (целевое значение - 1 час).

При этом инфраструктура не упирается ни в CPU, ни в память, ни в IO.
Из 8 ядер, которые сейчас выделены на этот сервер, в среднем нагружены 2.
IO не проседает, загрузка в районе 0.
Памяти выделено 18GB, свободно в среднем 8GB, т.е. тоже всё ок.
Т.е. получается, что проблема не в инфраструктуре, а в настройках всей связки индексации.

Потенциальные места для улучшений:
1) из питона кормить ES асинхронно (например, с помощью celery)
2) оптимизировать структуру хранения индекса в ES (много шардов, etc)
3) оптимизировать настройки ES (хз что тут можно улучшить, пулы и так есть в избытке)

Как думаете, в какие направления лучше всего копать?
  • Вопрос задан
  • 2576 просмотров
Подписаться 3 Оценить Комментировать
Пригласить эксперта
Ответы на вопрос 3
Eternalko
@Eternalko
index_concurrency смотрели? По идее должно быть 8 и 8 ядер нагружены.
index.merge.scheduler.max_thread_count вроде как если у вас нет затыка по IO то можно наращивать.

Кстати странно. У меня в ES (по ошибке) приходило 1-2к логов (документов) в секунду. Сервер был слабенький но удар спокойно держал. Правда индекс считался раз в сутки и я не заметил как что и как с ним было. Удалил все лишнее без разборов.
Ответ написан
Комментировать
@teobon Автор вопроса
Единственное, что хоть как-то помогло загрузить все ядра - это увеличение кол-ва шардов (был один, стало 4).
Большее кол-во шардов не дает прироста, меньшее - не загружает все ядра.

При этом так до конца и не понял, почему. Т.е. в принципе можно попробовать обьяснить - могут быть блокировки шардов на запись при индексации, но вроде как по доке такого поведения быть не должно.
Ответ написан
Комментировать
un1t
@un1t
100 тыс документов это совсем не много.
Я до 250 тыс индексировал, индексация занимает всего несколько минут на слабеньком VDS. (про геоданные не в курсе)
Какой у вас сердний размер документа? Вы все поля индексируете?
Я при создании индекса указываю
es.create_index(index, {
                'index': {
                    'refresh_interval': -1,
                }
            })

Отправляю документы через bulk_index по 10 тыс за раз, в конце запускаю обновление индекса
es.refresh(index)
Ответ написан
Ваш ответ на вопрос

Войдите, чтобы написать ответ

Похожие вопросы
SpectrumData Екатеринбург
от 200 000 до 300 000 ₽
Akronix Санкт-Петербург
от 150 000 до 200 000 ₽
18 янв. 2025, в 07:20
50000 руб./за проект
18 янв. 2025, в 03:12
1000 руб./за проект
18 янв. 2025, в 00:01
500 руб./за проект