Сложение вероятностей нельзя применять в данном контексте. Его можно использовать лишь с несовместными событиями. Несовместные события — это события, которые не могут возникать вместе одновременно(либо то, либо другое). Так как события А и В в принципе совместны, вероятность появления хотя бы одного из них нельзя рассчитать по теореме сложения вероятностей. Обычно подобные задачи решаются по формуле P(А) = 1 - Р(!А1) * Р(!А2) ... * Р(!Аn). Эта формула написана в "Руководстве к решению задач по теории вероятностей и математической статистике" В.Е. Гмурмана на странице 29, в параграфе 2 второй главы.
В нашем конкретном случае решение выглядит так:
Р(А1) = 0,3
Р(А2) = 0,4
Р(!А1) = 1 - 0,3 = 0,7
Р(!А2) = 1 - 0,4 = 0,6
Р(А) = 1 - Р(А1) * Р(А2) = 1 - 0,6 * 0,7 = 0,58
Ответ: 0,58.