from bs4 import BeautifulSoup
h = '''
<div class="searchPersonaInfo">
<a class="searchPersonaName" href="url">Ник</a>
<br>
Алекс
<br>
Murmansk
<img src="img.gif">
</div>
'''
soup = BeautifulSoup(h, 'lxml')
div = soup.find(class_='searchPersonaInfo')
for s in div.stripped_strings:
print(s)
https://sirus.su/api/statistic/tooltip.json
data = json.loads(response.text)
data = response.json()
import base64
imgstring = ""
imgdata = base64.b64decode(imgstring.split('base64,')[1])
filename = 'some_image.jpg'
with open(filename, 'wb') as f:
f.write(imgdata)
class ItemService:
def enrich_with_data(self, session: requests.Session, items: list[Item]) -> list[Item]:
for item in items:
response = self.repository.get_additional_data(session, item)
item_info = response.json()['iteminfo']
item.full_item_name = item_info['full_item_name']
#print(item.full_item_name)
return items, item.full_item_name