Программирование
- 1 ответ
- 0 вопросов
1
Вклад в тег
import face_recognition
import imutils
import pickle
import time
import cv2
import os
# find path of xml file containing haarcascade file
cascPathface = os.path.dirname(
cv2.__file__) + "/data/haarcascade_frontalface_alt2.xml"
# load the harcaascade in the cascade classifier
faceCascade = cv2.CascadeClassifier(cascPathface)
# load the known faces and embeddings saved in last file
data = pickle.loads(open('face_enc', "rb").read())
print("Streaming started")
video_capture = cv2.VideoCapture(0)
# loop over frames from the video file stream
while True:
# grab the frame from the threaded video stream
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(60, 60),
flags=cv2.CASCADE_SCALE_IMAGE)
# convert the input frame from BGR to RGB
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# the facial embeddings for face in input
encodings = face_recognition.face_encodings(rgb)
names = []
# loop over the facial embeddings incase
# we have multiple embeddings for multiple fcaes
for encoding in encodings:
# Compare encodings with encodings in data["encodings"]
# Matches contain array with boolean values and True for the embeddings it matches closely
# and False for rest
matches = face_recognition.compare_faces(data["encodings"],
encoding)
# set name =inknown if no encoding matches
name = "Unknown"
# check to see if we have found a match
if True in matches:
#Find positions at which we get True and store them
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the matched indexes and maintain a count for
# each recognized face face
for i in matchedIdxs:
# Check the names at respective indexes we stored in matchedIdxs
name = data["names"][i]
# increase count for the name we got
counts[name] = counts.get(name, 0) + 1
# set name which has highest count
name = max(counts, key=counts.get)
# update the list of names
names.append(name)
# loop over the recognized faces
for ((x, y, w, h), name) in zip(faces, names):
# rescale the face coordinates
# draw the predicted face name on the image
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(frame, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX,
0.75, (0, 255, 0), 2)
cv2.imshow("Frame", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()