Нужны видеокарты, суммарным объемом 1024гб. тут только специализированные, найти в продаже в странах под санкциями нереал, рынок пустой был уже в 2020-ом. Цены тут 5х от мировых.
Квантизация тут тоже есть, vllm самая эффективная реализация, поэтому если тебе не нужно дообучать, а только исполнение, то пойдет 8bit квантизация.
-------
На процессоре с помощью llama.cpp, где-нибудь 10-20 секунд на токен (кстати повышается в несколько раз при batch запросах, когда тебе нужно обработать сразу много prompt-ов).
Тебе нужна серверная материнка (хоть прошлого поколения, важна оперативная память), размер памяти минимум 256гб (4битная квантизация, потеряешь в качестве), лучше 512гб. К сожалению рынок тут только БУ со всеми вытекающими от сюда ценами и гарантиями.
--------
Можно запускать на нескольких десктопах!
Год назад в llama.cpp
портировали MPI реализацию, поддержка запуска на нескольких нодах (как пример нам было 8 raspberrypi и llama65b) поэтому приобрести 4 компьютера по 64-128гб не проблема, процессор не самый топовый, какой-нибудь AMD Ryzen 5 9600X/7600X (6-ядерный, лучшая производительность singlethread дешевле $300/$200), на сколько я понял, упирается все в сеть, поэтому сверху 10Gb ethernet адаптеры в придачу (они относительно дешевые).
Каждый из компьютеров обойдется примерно в 100т.р. (можно ужаться и набрать по 70т.р. но там и процессоры по слабее и память по медленнее, но не значительно), и таких нужно 3-4 штуки.
Сетевые карты 10G покупать парами, объединить в круг (это самый дешевый конфиг). Иначе, еще вложиться в свитч примерно такой же стоимости. Если честно я не нашел информации или каких то расчетов, которые скажут требования к сети, очень даже может быть что хватит встроенных в материнку и гигабитного свитча, речь идет об оптимальной утилизации процессора и памяти.
--------
Есть еще один экстремальный вариант, он не требует почти никаких особых затрат, любая даже самая слабая железка с любым количеством RAM (пусть условно 16гб-32гб будет, контекст хранить нужно) но с максимально быстрым ssd nvme диском (или несколькими в raid0). llama.cpp штатно умеет работать с моделями напрямую с диска (mlock режим), будет считывать всю модель по одному разу на каждый токен.
Например 4 ssd диска (проходной apaser за 2.5т.р. но лучше что то по быстрее с pci-e 4.0) на скорости 2гбайта/с (само собой есть быстрее)
с соответствующими pci-e контроллерами обойдутся в считанные 16-25т.р., полученный 'монстр' будет считывать всю модель с 8битной квантизацией за 30-15 секунд, и уже вопрос, успеет ли процессор на такой скорости модель считать.
p.s. осторожно, ssd на 'чтение' тоже не бесплатно работает, это тоже изнашивает ресурс, только не так быстро как запись, может в тысячу раз медленнее, может в десятки тысяч.