Epoch 1/10
14/14 [==============================] - 38s 3s/step - loss: 1.6671 - accuracy: 0.5000 - val_loss: 0.7270 - val_accuracy: 0.5000
Epoch 2/10
14/14 [==============================] - 20s 1s/step - loss: 0.7397 - accuracy: 0.5000 - val_loss: 0.7171 - val_accuracy: 0.5000
Epoch 3/10
14/14 [==============================] - 21s 1s/step - loss: 0.7059 - accuracy: 0.5000 - val_loss: 0.7006 - val_accuracy: 0.5000
Epoch 4/10
14/14 [==============================] - 22s 2s/step - loss: 0.6966 - accuracy: 0.5000 - val_loss: 0.6960 - val_accuracy: 0.5000
Epoch 5/10
14/14 [==============================] - 20s 1s/step - loss: 0.6946 - accuracy: 0.5000 - val_loss: 0.6946 - val_accuracy: 0.5000
Epoch 6/10
14/14 [==============================] - 19s 1s/step - loss: 0.6942 - accuracy: 0.5000 - val_loss: 0.6944 - val_accuracy: 0.5000
Epoch 7/10
14/14 [==============================] - 21s 1s/step - loss: 0.6940 - accuracy: 0.5000 - val_loss: 0.6943 - val_accuracy: 0.5000
Epoch 8/10
14/14 [==============================] - 20s 1s/step - loss: 0.6938 - accuracy: 0.5000 - val_loss: 0.6942 - val_accuracy: 0.5000
Epoch 9/10
14/14 [==============================] - 19s 1s/step - loss: 0.6937 - accuracy: 0.5000 - val_loss: 0.6942 - val_accuracy: 0.5000
Epoch 10/10
14/14 [==============================] - 19s 1s/step - loss: 0.6936 - accuracy: 0.5000 - val_loss: 0.6942 - val_accuracy: 0.5000
for i in range(3, 10+1):
model.compile(optimizer=Adam(math.pow(10, -i)), ...)
model.fit(...)