Про классификатор:
SVM часто используется для анализа тональности текста, так что выбор правильный. Точного ответа, какой алгоритм классификации будет работать лучше — нет, поэкспериментируйте с разными алгоритмами и выберите тот, который даст лучшие результаты. Навскидку, предложу Naive Bayes и MaxEnt.
Про признаки:
Как вам правильно предложили выше — попробуйте биграммы, а также попробуйте 2-3-4 буквенные граммы, это может помочь с проблемой орфографии. По поводу построения вектора, есть более эффективные функции простановки веса для признаков чем бинарная. Я использую обычно
delta tf-idf. В качестве дополнительных признаков можете попробовать морфологические теги (part-of-speech tag), бывает, что помогают. Также иногда помогают комбинация слов с тегами (напр: я-местоимения, люблю-глагол, чай-сущ.)
Про данные:
1500 комментариев — это тестовая выборка или данные для обучения модели? Или же все вместе? Для обучения вам понадобится гораздо больше данных. В зависимости от тематики их можно собрать с определенных сайтов (если фильмы, то, например, кинопоиск).
Также можете составить тональный словарь, список слов с их значением тональности (affective lexicons). Либо вручную, либо перевести с других языков (напр. с английского) — вручную либо автоматически, либо одним из методов автоматического составления словаря тональности. В целом, задача классификации на три класса достаточно сложная. Попробуйте сперва сделать для двух классов, а затем уже либо добавить доп. классификатор либо расширить модель для трех классов. Тут много вариантов. Удачи!