Вопрос решен.
Ниже предоставлен рабочий код.
<canvas id="canvas"></canvas>
<input type="range" name="Sharp" id="mix" min="0.1" max="100" step="0.01" value="0">
//Setting the sharpness value
let mix = document.getElementById("mix");
mix.addEventListener("input", ()=>{update(mix)});
//create canvas
canvas = document.getElementById("canvas");
context = canvas.getContext("2d");
//uploading a picture
let img = new Image();
img.src = "";
//set the size of reserved memory
canvas.width = img.width;
canvas.height = img.height;
//getting started with canvas
img.onload = update;
function sharpen (context, width, height, mix) {
//create an empty element with the given width/height
let dstData = context.createImageData(width,height),
dstBuff = new Uint32Array(dstData.data.buffer);
//collection of information
let pixel = context.getImageData(0,0,width,height),
data = new Uint32Array(pixel.data.buffer);
//Everything to work with the matrix
let kernel = [[0, -1, 0],// matrixа
[-1, 5, -1],
[0, -1, 0]],
katet = Math.round(Math.sqrt(kernel.length))+1,//root 9=3
half = (katet * 0.5) | 0;//3*0.5=1.5 discard values after the decimal point
//pixel processing
let dstIndex = 0;
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
let r = 0, g = 0, b = 0;
for (let sy = 0; sy < katet; sy++) {
const yy = Math.min(height - 1, Math.max(0, y + sy - half));
for (let sx = 0; sx < katet; sx++) {
const xx = Math.min(width - 1, Math.max(0, x + sx - half));
let pix = data[yy * width + xx];
r += ((pix & 0xFF) * kernel[sy][sx]);
g += ((((pix) >> 8) & 0xFF) * kernel[sy][sx]);
b += ((((pix) >> 16) & 0xFF) * kernel[sy][sx]);
}
}
red = Math.min(255,Math.max(0, (r*mix)+((data[y * width + x] )&0xFF)*(1-mix) ))&0xFF;
green = Math.min(255, Math.max(0, (g*mix)+(((data[y * width + x])>> 8)&0xFF)*(1-mix) ))&0xFF;
blue = Math.min(255, Math.max(0, (b*mix)+(((data[y * width + x])>> 16)&0xFF)*(1-mix) ))&0xFF;
const alfa = data[y * width + x] & 0xFF000000;
dstBuff[dstIndex++] = red | ((green) << 8) | ((blue) << 16) | alfa | ((blue) << 16);//fill with changes
}
}
context.putImageData(dstData, 0, 0);//overwriting the canvas with new data
}
function update() {
canvas.width = img.width;
canvas.height = img.height;
context.drawImage(img, 0, 0);
sharpen(context, img.width, img.height, parseInt(mix.value) * 0.01)
}