@woodyJS

Сколько членов ряда Фурье необходимо использовать для приближения?

Надо исследователь сходимость ряда Фурье по косинусам, для этой функции
F(x)=1-x;
отрезок от 0 до 1
И определить сколько членов ряда Фурье необходимо использовать для приближения функции на концах отрезка и в районе середины отрезка?
Как определить это кол-во членов ряда?
Я уже задавал этот вопрос, но так и не понял последний пункт
Написал программу которая рассчитывает ряд Фурье для этой функции.
Можно ли для опред точного значения погрешности из знач функции вычесть значения ряда Фурье с разным числом слагаемых и найти макс полученный разности? это будет решением?
#include "math.h"
#include "conio.h"
#include "stdlib.h"
#include "iostream"
#include <fstream>
using namespace std;
double const pi = 3.14159;
double koef_An(double a, double b, double c)
{
	double n;
	double T = 0;	
		for (n = 1; n <= c; n+=2) {					
		T += 2/((pi*pi)*((2*n-1)*(2*n-1)));			
		cout << "koef An= " << T << endl;				
	}
	return(T);
}
void main()
{
	//f(x)=1-х на отрезке от 0 до 1 
	double a = 0;
	double b = 1;
	double c = 3;// кол - во n, для четных n(n = 2k) имеем an = 0, для нечетных(n = 2k - 1)
	double X = 0;
	double An;
	double A0 = 1;//Для этих данных а0=1
	double fx;
	cout << " A0= " << A0 << endl;	
	//ofstream myfile;
	//myfile.open("data.txt");
	for (double X = 0; X <= 1; X += 0.1)
	{		
		for (int k = 1; k <= c; k += 2)
		{
			fx = koef_An(a, b, k)*cos(pi*(2 * k - 1)*X);
			//cout<<"k= "<<k<<" l= "<<l<<" Ak="<<Ak<<endl;
			fx += 0.5;
			//myfile << X << " " << fx<<"\n";			
			cout << "fx=" << fx << endl;
		}		
	cout << "-------------------------------"  << " X=" << X << endl;
	}
	//myfile.close();
	_getch();
}
  • Вопрос задан
  • 741 просмотр
Решения вопроса 1
AtomKrieg
@AtomKrieg
Давай я поищу в Google за тебя
Ряд сходится по
1) по Даламбару если lim ( а[n+1] / a[n] ) < 1 при n-> ∞
2) по Коши если lim (sqr(a[n], 1/n)) при n-> ∞
Можете попробовать посчитать предел
Если приближенно численным методом прикинуть сходимость, можно проверить что каждый член ряда меньше чем предыдущий. Проверять либо до определенного количества n, либо пока точность не станет ниже некоторого значения.

И определить сколько членов ряда Фурье необходимо использовать для приближения функции на концах отрезка и в районе середины отрезка?

Делаете функцию, которая считает разницу между значением функции в точке и ее разложением в зависимости от n. Как только эта разница < ε (заданная точность) значит этого количества хватает.
Ответ написан
Комментировать
Пригласить эксперта
Ваш ответ на вопрос

Войдите, чтобы написать ответ

Похожие вопросы