Подскажите, пожалуйста как решить эту проблему? Если нужно могу приложить Jupyter Notebook и папку с файлами(там изображения).
def define_discriminator(in_shape = (106, 106, 1)):
model = Sequential()
model.add(Conv2D(64, (3,3), strides = (2,2), padding = "same", input_shape = in_shape))
model.add(LeakyReLU(alpha = 0.2))
model.add(Dropout(0.5))
model.add(Conv2D(64, (3,3), strides = (2,2), padding = "same"))
model.add(LeakyReLU(alpha = 0.2))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(1, activation = "sigmoid"))
opt = Adam(learning_rate = 0.0002, beta_1 = 0.5)
model.compile(loss = "binary_crossentropy", optimizer = opt, metrics = ["accuracy"])
return model
def define_generator(latent_dim):
model = Sequential()
n_nodes = 128 * 53 * 53
model.add(Dense(n_nodes, input_dim = latent_dim))
model.add(LeakyReLU(alpha = 0.2))
model.add(Reshape((53, 53, 128)))
model.add(Dense(1024))
model.add(Conv2DTranspose(1024, (4,4), strides = (2,2), padding = "same"))
model.add(Dense(1024))
model.add(LeakyReLU(alpha = 0.2))
model.add(Dense(1024))
model.add(Conv2D(1, (7,7), padding = "same", activation = "sigmoid"))
return model
def define_gan(g_model, d_model):
d_model.trianabel = False
model = Sequential()
model.add(g_model)
model.add(d_model)
opt = Adam(learning_rate = 0.0002, beta_1 = 0.5)
model.compile(loss = "binary_crossentropy", optimizer = opt)
return model
def generate_real_samples(dataset, n_samples):
ix = randint(0, dataset.shape[0], n_samples)
X = dataset[ix].T
Y = ones((n_samples, 1)).T
return X, Y
def generate_latent_points(latent_dim, n_samples):
x_input = randn(latent_dim * n_samples)
x_input = x_input.reshape(n_samples, latent_dim)
return x_input
def generate_fake_samples(g_model, latent_dim, n_samples):
x_input = generate_latent_points(latent_dim, n_samples)
X = g_model.predict(x_input).T
Y = zeros((n_samples, 1)).T
return X, Y
import tensorflow as tf
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=51, n_batch=10):
bat_per_epo = int(dataset.shape[0] / n_batch)
half_batch = int(n_batch / 2)
for i in range(n_epochs):
for j in range(bat_per_epo):
X_real, y_real = generate_real_samples(dataset, half_batch)
X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
print(X_real, X_fake)
print(y_real, y_fake)
X, y = vstack((X_real, X_fake)), vstack((y_real, y_fake))
d_loss, _ = d_model.train_on_batch(X, y)
X_gan = generate_latent_points(latent_dim, n_batch)
y_gan = ones((n_batch, 1))
g_loss = gan_model.train_on_batch(X_gan, y_gan)
print('>%d, %d/%d, d=%.3f, g=%.3f' % (i+1, j+1, bat_per_epo, d_loss, g_loss))
if (i+1) % 10 == 0:
summarize_performance(i, g_model, d_model, dataset, latent_dim)
clear_output()
latent_dim = 100
d_model = define_discriminator()
g_model = define_generator(latent_dim)
gan_model = define_gan(g_model, d_model)
print(pixels.shape)
train(g_model, d_model, gan_model, np.array(pixels), latent_dim)<code lang="python">
</code>
<code lang="python">
ValueError Traceback (most recent call last)
<ipython-input-324-b3360c520333> in <module>
4 gan_model = define_gan(g_model, d_model)
5 print(pixels.shape)
----> 6 train(g_model, d_model, gan_model, np.array(pixels), latent_dim)
<ipython-input-323-051ded2aca77> in train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs, n_batch)
10 print(y_real, y_fake)
11 X, y = vstack((X_real, X_fake)), vstack((y_real, y_fake))
---> 12 d_loss, _ = d_model.train_on_batch(X, y)
13 X_gan = generate_latent_points(latent_dim, n_batch)
14 y_gan = ones((n_batch, 1))
~\anaconda3\envs\LikeProject\lib\site-packages\keras\engine\training.py in train_on_batch(self, x, y, sample_weight, class_weight, reset_metrics, return_dict)
1850 with self.distribute_strategy.scope(), \
1851 training_utils.RespectCompiledTrainableState(self):
-> 1852 iterator = data_adapter.single_batch_iterator(self.distribute_strategy, x,
1853 y, sample_weight,
1854 class_weight)
~\anaconda3\envs\LikeProject\lib\site-packages\keras\engine\data_adapter.py in single_batch_iterator(strategy, x, y, sample_weight, class_weight)
1631 data = (x, y, sample_weight)
1632
-> 1633 _check_data_cardinality(data)
1634 dataset = tf.data.Dataset.from_tensors(data)
1635 if class_weight:
~\anaconda3\envs\LikeProject\lib\site-packages\keras\engine\data_adapter.py in _check_data_cardinality(data)
1647 label, ", ".join(str(i.shape[0]) for i in tf.nest.flatten(single_data)))
1648 msg += "Make sure all arrays contain the same number of samples."
-> 1649 raise ValueError(msg)
1650
1651
ValueError: Data cardinality is ambiguous:
x sizes: 4
y sizes: 2
Make sure all arrays contain the same number of samples.
</code>