Задать вопрос
Ответы пользователя по тегу Карьера в IT
  • Оцените задачу, которую я даю кандидатам на работу. Не слишком ли я суров?

    tersuren
    @tersuren Автор вопроса
    У решения на самом деле два уровня.
    Первый это заценить таки (не) случайность вводимого набора. Мы смотрим только на строчку символов. Тут два основных варианта: или мы берем огромный существующий текст и используем его как донор хороших описаний для Байеса или, что по сути тоже самое, но другим математическим аппаратом, цепи Маркова используем. Грубо говоря в обоих случах мы используем тот факт, что в английском языке после буквы скажем E буквы R и U идут с разной вероятностью. И эта вероятность как раз и характеризует язык. Короткие строки, когда описание состоит всего из одного слова о 3х-4х буквах) режутся по словарю, так как статистические методы там не работают. Зато тут хоршо работает словарь в лоб. Если человек в слове car ошибку посадил, то один хрен нельзя понять что это.
    Второй слой заключается как раз в том, что хотя набор данных поступает и в случайном порядке, но его природа изначально не случайна. Клиенты шиппинговой компании подчиняются тому же нормальному распределению как и все остальные. Ну или Правилу Парето, если кому эта терминология привычнеее. Совершенно случайный клент не в курсе еще какие поля важны, а какие нет. Он, как правило, вполне аккуратен. К тому же ему меньше смысла вбивать билиберду, так как его трудозатраты изменятся на пару секунд. Основной источник белиберды это постоянно отправляющий посылки ленивый работник какого-то склада интернет магазина или чего-то аналогичного. Он во-первых шлет не свое, а во-вторых для него как раз пара секунд на каждой посылке складываются в весомый выигрыш. У нас есть адрес отправителя всегда - ибо это посылка. То есть мы всегда в курсе кто шлет много и кто часто конит и, соответственно, кто работает честно. Это помогает нам сортировать сомнительный случаи когда наш Баес/Марков/частотное распределение дает нам 50 на 50.
    Ответ написан